459 research outputs found

    Interactions within the turbulent boundary layer at high Reynolds number

    Get PDF
    Simultaneous streamwise velocity measurements across the vertical direction obtained in the atmospheric surface layer (Re_τ ≃ 5 × 10^5) under near thermally neutral conditions are used to outline and quantify interactions between the scales of turbulence, from the very-large-scale motions to the dissipative scales. Results from conditioned spectra, joint probability density functions and conditional averages show that the signature of very-large-scale oscillations can be found across the whole wall region and that these scales interact with the near-wall turbulence from the energy-containing eddies to the dissipative scales, most strongly in a layer close to the wall, z^+ ≲ 10^3. The scale separation achievable in the atmospheric surface layer appears to be a key difference from the low-Reynolds-number picture, in which structures attached to the wall are known to extend through the full wall-normal extent of the boundary layer. A phenomenological picture of very-large-scale motions coexisting and interacting with structures from the hairpin paradigm is provided here for the high-Reynolds-number case. In particular, it is inferred that the hairpin-packet conceptual model may not be exhaustively representative of the whole wall region, but only of a near-wall layer of z^+ = O(10^3), where scale interactions are mostly confined

    On turbulent entrainment and dissipation in dilute polymer solutions

    Get PDF
    We present a comparative experimental study of a turbulent flow developing in clear water and dilute polymer solutions (25 and 50 wppm polyethylene oxide). The flow is forced by a planar grid that oscillates vertically with stroke S and frequency f in a square container of initially still fluid. Two-component velocity fields are measured in a vertical plane passing through the center of the tank by using time resolved particle image velocimetry. After the forcing is initiated, a turbulent layer develops that is separated from the initially irrotational fluid by a sharp interface, the so-called turbulent/nonturbulent interface (TNTI). The turbulent region grows in time through entrainment of surrounding fluid until the fluid in the whole container is in turbulent motion. From the comparison of the experiments in clear water and polymer solutions we conclude: (i) Polymer additives modify the large scale shape of the TNTI. (ii) Both, in water and in the polymer solution the mean depth of the turbulent layer, H(t), follows the theoretical prediction for Newtonian fluids H(t)∞√Kt, where K∞S^2f is the “grid action.” (iii) We find a larger grid action for dilute polymer solutions than for water. As a consequence, the turbulent kinetic energy of the flow increases and the rate of energy input becomes higher. (iv) The entrainment rate β=v_e/v_(rms) (where v_e=dH/dt is the interface propagation velocity and v_(rms) is the root mean square of the vertical velocity) is lower for polymers (β_p≈0.7) than for water (β_w≈0.8). The measured values for β are in good agreement with similarity arguments, from which we estimate that in our experiment about 28% of the input energy is dissipated by polymers

    On the evolution of snow roughness during snow fall

    No full text
    The deposition and attachment mechanism of settling snow crystals during snowfall dictates the very initial structure of ice within a natural snowpack. In this letter we apply ballistic deposition as a simple model to study the structural evolution of the growing surface of a snowpack during its formation. The roughness of the snow surface is predicted from the behaviour of the time dependent height correlation function. The predictions are verified by simple measurements of the growing snow surface based on digital photography during snowfall. The measurements are in agreement with the theoretical predictions within the limitations of the model which are discussed. The application of ballistic deposition type growth models illuminates structural aspects of snow from the perspective of formation which has been ignored so far. Implications of this type of growth on the aerodynamic roughness length, density, and the density correlation function of new snow are discusse

    Viscous tilting and production of vorticity in homogeneous turbulence

    Get PDF
    Viscous depletion of vorticity is an essential and well known property of turbulent flows, balancing, in the mean, the net vorticity production associated with the vortex stretching mechanism. In this letter, we, however, demonstrate that viscous effects are not restricted to a mere destruction process, but play a more complex role in vorticity dynamics that is as important as vortex stretching. Based on the results from three dimensional particle tracking velocimetry experiments and direct numerical simulation of homogeneous and quasi-isotropic turbulence, we show that the viscous term in the vorticity equation can also locally induce production of vorticity and changes of the orientation of the vorticity vector (viscous tilting)

    On steady alternate bars forced by a localized asymmetric drag distribution in erodible channels

    Get PDF
    Studying the effect of different in-stream fluvial turbines siting on river morphodynamics allowed us to witness the onset of a time-Averaged, large-scale, alternate distortion of bed elevations, which could not be exclusively related to the turbine rotor blockage. The longitudinal profiles of this two-dimensional bathymetric perturbation resemble those of steady fluvial bars. In this contribution we generalize the problem addressing a spatially impulsive, asymmetric distribution of drag force in the channel cross-section. This is experimentally investigated through the deployment of differently sized grids perpendicular to the flow, and analytically explored as a finite perturbation of an open channel flow over an erodible sediment layer, as described by a coupled flow-sediment shallow water equation. The steady solutions of this fluvial morphodynamic problem, physically represented by alternate bars scaling with the channel width, highlight the importance of the resonant conditions in defining the spatial extent of the bed deformation. The equations further suggest that in very shallow flows any asymmetric obstruction may lead to an upstream propagation of the steady bars, consistent with previous studies on the effects of channel curvature. In broad terms, this study provides the preliminary framework to control the onset of river meandering through imposed finite perturbations of the cross-section. In a more applied sense, it provides a tool to predict non-local scour-deposition patterns associated with the deployment of energy converters or other flow obstructions

    A Statistical Description of Particle Motion and Rest Regimes in Open-Channel Flows Under Low Bedload Transport

    Get PDF
    AbstractIn the last decade several efforts were devoted to model sediment‐particle transport in rivers as a stochastic process. Experimental observations are therefore needed to validate these models and to provide the correct probability distribution of selected stochastic variables. The kinematics of sand particles is investigated here using nonintrusive imaging to provide a statistical description of bedload transport under incipient motion conditions. In particular, we focus on the alternation between motion (particle steps) and rest regimes to quantify the probabilistic distribution of the particles waiting time, which is suggested by many studies to be responsible for anomalous diffusion. The probability distributions of the particle step time and step length, streamwise and spanwise velocities, acceleration, and waiting time are quantified experimentally. Results suggest that variables describing the particle motion regime are thin‐tailed distributed, whereas the waiting times exhibit a power law distribution. A specific class of waiting times during which the grain is observed to oscillate without a net displacement is classified as active and is analyzed separately from the other, so‐called deep waiting times. The experimental results, obtained under five different transport conditions, describe grain‐scale kinematics and dynamics at different wall shear stress. They provide both a benchmark data set for validating particle‐transport numerical simulation and critical input parameters for the stochastic modeling of bedload transport

    Roughness characterization of and turbulent boundary layer flow over flat snow surfaces

    Get PDF
    Abstract only

    Patient satisfaction and food waste in obstetrics and gynaecology wards

    Get PDF
    Introduction: Patient satisfaction is an indicator of healthcare quality, and expectation is an important determinant. A component of patient satisfaction is the quality of foodservice. An indicator of this quality is the food wasted by hospitalised patients. In the present study, we investigated patient satisfaction regarding food and foodservice, the expectation on food quality and the amount of food wasted in two obstetrics and gynaecology wards in Northern and Southern Italy. Patients and Methods: A questionnaire, including sociodemographic data, rate of food waste, expectations of food quality and characteristics of food and foodservice, was admini-strated to 550 inpatients in obstetrics and gynaecology wards (275 for each hospital). Univariate analysis was performed to describe the results, and multivariate analysis was carried out to control for sociodemographic data. Results: Northern patients were more satisfied with the quality of food (54.2% vs 36.0%) and foodservice (54.5% vs 38.2%) than southern patients. Northern patients had more positive expectations about the quality of food (69.5% vs 31.6%), whereas southern patients stated that they had no expectations. Southern patients gave more importance to mealtime (72.7% vs 26.2%), and many of them brought food from home to the hospital (30.2% vs 2.2%) through relatives who came to visit them. Southern patients discarded about 41.7% of food served, whereas northern patients discarded only about 15.3%. Discussion: Food waste is a worldwide problem due to its economic, social and environmental effects. Especially in hospitals, food waste could have a negative impact on the overall patient satisfaction

    Artificiality, reactivity, and demand effects in experimental economics

    Get PDF
    A series of recent debates in experimental economics have associated demand effects with the artificiality of the experimental setting and have linked it to the problem of external validity. In this paper, we argue that these associations can be misleading, partly because of the ambiguity with which \u201cartificiality\u201d has been defined, but also because demand effects and external validity are related in complex ways. We argue that artificiality (understood as unfamiliarity of the experimental environment) may be directly as well as inversely correlated with demand effects. We also distinguish between the demand effects of experimentation and the reactions that they may trigger and that might endanger experimental validity. We conclude that economists should pay more attention to the way in which subjects construe the experimental task and learn to exploit subjects\u2019 reactivity to expectations in their experiments
    corecore